
Fundamentals of “security
exploits”

… and implications for the design of future secure computing architectures & languages

(extended edition with proof sketches)
Thomas Dullien - optimyze - January 2019

thomasdullien@optimyze.cloud - https://optimyze.cloud

https://optimyze.cloud

Memory Corruptions: A problem since 1976

● First mention of buffer overflows and
their exploitation is from 1976 or even
1972

● 46-42 year later memory corruptions are
still the primary source of security
vulnerabilities

● Why is this not solved yet?

What is this thing we call an ‘exploit’?
Central term in computer security - but ill-defined.

A program that does
something you are not

supposed to be able to do.
When you

overwrite EIP.

Magic.
I recognize

it when I
see it.Access.

“Security exploits” are poorly understood
● Computer Science studies “what happens when things go right”.

● Electrical engineering studies “how to make things go right almost all of
the time” (reliability).

● Formal methods in Computer Science studies “how to prove things do not
go wrong”

● Security is about “what are the consequences when something goes
wrong”, which is … none of the above.

Why define it?
Real-world decisions are being made:

Trade-offs involving:

● Performance
● Programmability
● Complexity

vs.
“difficulty of exploitation”.

Do random bitflips in memory
(Rowhammer) constitute a
security problem?

Can they be “exploited”?

Do we need to tell customers?

ExploitabilityExploit Mitigations

Raising Bars
Mitigations are often accepted on the assurance that they “raise the bar”.
Unanswered questions:

● How much will the bar be raised?
● Will it cost the attacker effort once, or every time he exploits something?
● Is the cost (performance, programmability, complexity) worth the gain?

The discussion needs clear terms & understanding, lest we end up like the
MitiGator:

MitiGator: Raising the bar until no more exploits can be seen.

MitiGator

My background
● First exploit written in 1998 - 21 years ago, presented on Win32 Heap

Exploits in 2002
● Built tools/paper about patch diffing (“BinDiff”) in 2003/2004. Started a

company focused on reverse engineering tools.
● Company acquired by Google in 2011 (response to Aurora).
● 2011-2015: Working on malware analysis infrastructure.
● 2016-2019: Vulnerability research at Google Project Zero

● Since 2009 or so: Thinking about “foundations” for exploitation.
● December 2017: Finally got a paper about it published.

This talk
● Informal introduction to the concept “weird machine”

● Proof sketch

● Relationships to other fields
○ Automata and model checking (“stuttering bisimulation”)
○ Dynamical systems (Lyapunov Exponents, Cellular Automata)
○ Minimal turing machines and emergent computation

Weird machines - what are they?
Part 1: The intuition.

Three perspective shifts are necessary

Software as
emulator for an

intended finite-state
machine (or
transducer).

Software as
something that

restricts the
reachable state

space of a device.

Symmetry between
providing input to a
finite-state machine
and “programming”.

1. What is
software?

… for a finite state machine that
we would like to have.

Software is an
emulator ...

Why do people write software?
● They want to solve a concrete problem by means of a (finite state) machine

(or more precisely transducer - a finite-state machine with output)
● They do not have the machine to solve it
● They write software that emulates the finite state machine they want on a

general-purpose CPU

What I need What I have

2. What is
software?

… that restricts the number of
reachable states in a

general-purpose CPU.

Software is a
restriction ...

Nested state spaces in computing
Possible physical

states of the
computational device

Observable states of
the computational

device

Documented possible
states of the

computational device

“Sane” states of the
computational device
running the software

Program execution should follow trajectories
through “intended”, “sane” states

During exploitation, a state outside the “intended”,
“sane” set of states is reached

The attacker carefully controls the trajectory
through those “weird” states

3. What is
programming?

… is almost indistinguishable
from programming.

Providing input
to a computer...

Symmetry between input and programming

RAM

I/O

Read
instruction

& data /
write data

Read /
write data

Back to weird machines

The intended and emulated FSM

Intended finite state
machine (IFSM) Emulated version of

the IFSM

The intended and emulated FSM

Intended finite state
machine (IFSM) Emulated version of

the IFSM

The intended and emulated FSM

Intended finite state
machine (IFSM) Emulated version of

the IFSM

The intended and emulated FSM

Intended finite state
machine (IFSM) Emulated version of

the IFSM

The intended and emulated FSM

Intended finite state
machine (IFSM) Emulated version of

the IFSM

The intended and emulated FSM

Intended finite state
machine (IFSM)

The intended and emulated FSM

Intended finite state
machine (IFSM)

The intended and emulated FSM

Intended finite state
machine (IFSM)

The intended and emulated FSM

Intended finite state
machine (IFSM)

The intended and emulated FSM

Intended finite state
machine (IFSM)

The intended and emulated FSM

Intended finite state
machine (IFSM)

The intended and emulated FSM

Intended finite state
machine (IFSM)

The weird machine
● Starting from a “sane” state, we somehow enter a state that does not

correspond to any state in the IFSM. A weird state.

● By repeatedly applying transformations designed to transform sane state to
stane state, we reach a new weird state.

● We obtain a machine that can be driven through various states by our input.
It contains many more states than the IFSM, and is emergent, not designed.

Attacker goal: Reach a state that violates a security requirement.
Write a program for the weird machine.

Weird machines - what are they?
Part 2: Definitions etc.

The Intended Finite State Machine
● The state machine we want to have is called the “intended finite state

machine” (IFSM)
● It is usually not explicitly specified
● It is “perfect by design” - i.e. it is the state machine that fully implements our

intents.
● It cannot, by definition, have security problems (one can specify formal

“security properties”)

Let us examine the smallest interesting example we can come up with.

Reduced example: A secret-keeping machine

An informally-specified IFSM

An almost formally-specififed IFSM

Small enough to specify (don’t read this now!)

What is
security?

Security are
properties of
the IFSM ...

… that we want to hold in the
presence of an adversary.

Security Properties
● Security properties are “what do we want to be true for the IFSM”.
● Informally, in our example:

You need to know (or guess) the right password in order to obtain the stored
secret.

● There should be no way to automatically extract the secret without the
password with any probability better than guessing

Formal security properties of the IFSM
● Multi-step game with attacker & defender that interact with the IFSM
● Game flow:

a. Attacker chooses a distribution over finite-state transducers that have as input alphabet the
output alphabet of the IFSM, and that have as output alphabet the input alphabet of the IFSM

b. Defender draws p, s uniformly at random from
c. Attacker draws a finite-state transducer from his distribution and connects it to the

IFSM. The transducer is allowed to interact with the IFSM for steps
d. The defender sends p,s to the IFSM
e. The attacker is allowed to have his transducer interact with the IFSM for steps.

Let be the sequence of outputs that the IFSM sends to the exploit during
this game.

Dueling transducers: Diagram

IFSM

Dueling transducers: Diagram

IFSM
Output of exploit is sent
to the IFSM to interact

with it.

IFSM
Output of exploit is sent
to the IFSM to interact

with it.

Dueling transducersOutput of the IFSM is sent to the
exploit.

Formal security properties of the IFSM
The desired security property of our game is:

“The probability that the attacker gets the defender’s secret s sent to him needs
to no better than what he could obtain through random guessing, no matter what
program/exploit he chooses.”

Implementation We will write software to emulate
the IFSM on a simple RAM
machine.

A simple computing environment
● Standard RAM machine with 2^16 memory cells that can

hold 32 bit values each.

● Memory cells r0 to r6 are registers - memory locations
that cannot be accessed indirectly.

● Harvard architecture: Program is not stored in main
memory.

● Program denoted with , individual lines

● Instructions execute in zero time (timing attacks out of
scope for this paper / talk)

● State fully determined by

● Set of all states is

Two implementations of the IFSM
1. One implementation that simulates the set “Memory” by using a flat linear

array & sequential scanning.

2. One that simulates the set “Memory” by using two singly-linked lists and two
list-heads.

Foreshadowing: The first one will be provably unexploitable, the second will be
provably exploitable.

What is “sane”
behavior of a

program?
Using the IFSM and our

abstractions, we can define both
“sane” states of the CPU, and

erroneous states with unpredictable
consequences.

When exactly does a program
go “off the rails” ?

Correspondence between IFSM and CPU
We can map between IFSM states and CPU states, but not perfectly.

Instantiation: Map from states of the IFSM to sets of memory states of the
CPU. Note that one IFSM state can be represented by many CPU states!

“Give me the set of all possible states of the CPU that can represent a given
state of the IFSM”.

Correspondence between IFSM and CPU
We can map between IFSM states and CPU states, but not perfectly.

Abstraction: Partial map from states of the CPU to states of the IFSM. Note
that there are many CPU states that do not correspond to an IFSM state!

“What IFSM state does this state of my CPU correspond to?”

Sane states
● CPU States on which the abstraction partial map is defined (e.g. that have a

clear correspondence to states of the IFSM) are called sane states.

Transitory states
● A transition between two IFSM states can usually not be performed

atomically in the CPU

● Many CPU instructions are usually required to emulate an IFSM transition

● As a consequence, the CPU travels through “transitory states”:
○ A CPU state occurring during the emulation of an edge that is always part of a benign and

intended transition of the IFSM

Weird states
● Sane states correspond cleanly to IFSM states. Transitory states correspond

to intermediate states while emulating a transition. But there are many
possible CPU states that are in neither set.

● These states, which should never be observed, are called weird states.

CPU state space est omnis divisa
in partes tres:

Weird states

Weird states
Weird states can be entered in many different ways in reality:

● Human Error (software bugs)
● Hardware Faults (Rowhammer)
● Transcription Errors
● Mis-specification of the semantics of CPU
● …

What is
programming?

… is almost indistinguishable
from programming.

Providing input
to a computer...

Classical view of programming

Summarize non-observable states

Attacker view of programming

What is
“exploitation” ?

Programming an emergent
computational device, the
“weird machine”, to violate
security properties.

The weird machine
After entering a weird state, the
emulated transitions will operate
happily on it.

The weird machine

There is now a new computational device: The weird machine.

● Transforms states in via emulated transitions designed to
transform IFSM states.

● Takes the input stream of the IFSM as instruction stream
● are terminating states for the weird machine (because the

IFSM resumes execution)

The weird machine: Properties
The weird machine has a number of interesting properties:

● IFSM Inputs as instruction stream

● Unknown state space (gets explored by exploit author)

● Unknown computational power (gets explored by exploit author)

● Emergent instruction set:
○ Results from interaction of the CPU, the program rho, and the IFSM
○ Often extremely unwieldly to program
○ Semantics need to be “discovered”

Exploitation

Exploitation is …

● the setup (choosing the right sane state),
● initialization (moving the emulated IFSM into an initial weird state),
● and programming of a weird machine

An “exploit” is such a triple that causes a violation of the security properties of
the IFSM.

Can we prove
anything? A 1-slide summary of results

followed by a long proof sketch.

Exploitability? Unexploitability?

Two implementations of the IFSM
1. One implementation that simulates the set “Memory” by using a flat linear

array & sequential scanning.

2. One that simulates the set “Memory” by using two singly-linked lists and two
list-heads.

The first one can be proven to be unexploitable, the second is provably
exploitable in an attacker model where the attacker can flip 1 bit in memory.

How to read the proof?
● Not practical to prove any non-toy systems unexploitable
● The important part of the paper is the intuition we covered so far

The proof is in the paper for three reasons:

● As a ploy to get the paper published. Nobody publishes just a definition +
intutition.

● Complexity works in favor of the attacker. What is the minimum complexity
needed until things become exploitable?

● To illustrate that control-flow integrity is insufficient for security (and that
people should not obsess about it)

Proving (non-)exploitability: Attacker model
If we want to reason about exploitability, we need an attacker model. Many
plausible models exist (see cryptographic community for a “zoo of attackers”).

Simple attacker for this talk:

Single chosen bit-flip.

Formal attacker model in the security game
● Game flow:

a. Attacker chooses a distribution over finite-state transducers that have as input alphabet the
output alphabet of the IFSM, and that have as output alphabet the input alphabet of the IFSM

b. Defender draws p, s uniformly at random from
c. Attacker draws a finite-state transducer from his distribution and connects it to the

IFSM. The transducer is allowed to interact with the IFSM for steps
d. The defender sends p,s to the IFSM
e. The attacker is allowed to have his transducer interact with the IFSM for steps. At

any step, but only once, he is allowed to flip an attacker-chosen bit in memory (not in
registers).

Exploitability of the linked-list implemented IFSM
Exploitability of the IFSM implemented using two singly linked lists is shown by
simply providing an exploit in the above game.

End of the initialization phase.
The attacker begins the main part of his attack.

The linked-list implementation is exploitable ...

… even by an attacker that just gets to corrupt one bit

… in spite of perfect control flow integrity

Proving non-exploitability
Proving non-exploitability has a different flavor.

Idea of proof:

● Any sequence of outputs that can be produced by an attacker with
the ability to flip bits is a proper subsequence of the that can be
produced by an attacker without the ability to flip bits in a maximum of
10000 extra interactions.

“An attacker does not gain any significant advantage through his ability to flip
bits”

Assume that we have a bit-flipping exploit
Assume the bit-flipping attacker can provide a transducer so that

and furthermore that for a non-bit-flipping attacker, the security property holds:

Proof sketch from here on
1. Enumerate all possible transitions that an attacker can perform by flipping a

single bit
a. Result: Only 5 possible transitions:

i. 3 are from sane state to sane state:
1. (p, s) → (p XOR 2^i, s)
2. (p, s) → (p, s XOR 2^i)
3. (2^i, s) → (0, s)

ii. 2 are from sane state to weird state:
1. (p, s1), (p XOR 2^i, s2) → (p, s1), (p, s2)
2. (p, 2^i) → (p, 0)

2. Show that any output sequence using 3 sane-to-sane transitions can be
emulated by a maximum of 10000 extra operations without flipping a bit.

3. ….

Proof sketch from here on
1. Enumerate transitions, 3 sane → sane, 2 sane → weird
2. Show the first 3 can be emulated without bitflips in less than 10000 steps
3. Show that any output sequence for the other 2 can be emulated in less than

10000 extra steps.
a. Examine the sequence of inputs to the target and outputs of the target that can be produced

by an attacker that uses one of the sane → weird transitions
b. Construct a sequence of inputs to the target, which, without bitflips, produces a sequence of

inputs/outputs so that the of the attacker with bitflips is a proper subsequence of
the of the attacker without bitflips.

Proof sketch from here on
1. Enumerate transitions, 3 sane → sane, 2 sane → weird
2. Show the first 3 can be emulated without bitflips in less than 10000 steps
3. Show that any output sequence for the other 2 can be emulated in less than

10000 extra steps.

So if we have an attacker with bitflips for whom , then we
can build an attacker without bitflips for whom

This contradicts our assumption that an attacker without bitflips cannot perform
better than guessing.

Proof details
Not very pretty.

Mostly rote exhaustion of the possible weird state transitions.

I would love to have an elegant proof, but I do not.

If you are interested, please dig into the paper (and make me aware of any flaws
that need fixing)

Consequences …

… and implications.

Consequences (I)

● Making statements about (non-)exploitability (or the lack thereof) is very hard
● Making statements about non-exploitability is possible, if not practical

Consequences (II)

● Multiple bugs in the same target will produce related weird machines
● While not identical, attackers can likely re-use fragments of a previous attack

in a new attack
a. Similar to “library functions” for the weird machine
b. Already common in practice with Browser Javascript heap grooming libraries

● Impact on mitigations that randomize the programming environment (ASLR
etc.) is unclear:

a. Will the attacker be able to use one “weird machine code fragment” that he constructed to
break a mitigation in a previous attack in a new attack?

b. Which mitigations will be hard to bypass in repeated-attacks-against-same-software
scenarios?

Consequences (III)

● Control-flow-integrity is no panacea. Our examples had perfect CFI.
● The extent to which CFI will make exploitation impossible is extremely

unclear, and highly dependent on both the IFSM and the implementation.

● Registers, e.g. memory that was not accessible through indirection and in
which the attacker can not flip a bit, play a crucial role.

● The data structure which allowed indirection also seems to cause trouble.
● Complexity seems to give advantage to the attacker (more transitions).

● RAM machines with indirect addressing have a different computational
power than those that do not. Is the same difference at play here?

Consequences (IV)

● Exploitation is programming. Automated exploitation is a form of code
synthesis.

● Contrary to real-world programs, attacks are successful even if they only
work probabilistically.

Closing notes

● The single-bit-flip attacker model is not the best or most realistic attacker
model.

● The example IFSM is tiny and not a realistic piece of software.

Both were not chosen because they reflect real software deployed today, but
because they allowed a close examination of “where does the line between
exploitability and non-exploitability lie”.

Relationships to other fields

What fields study related phenomena?

1. Model checking community: “Stuttering bisimulation”

2. The dynamical systems and cellular automata community: “Discrete
Dynamical Systems, Cellular Automata”

3. Subset of the cellular automata community: “Emergent computation” and
“Minimal Turing machines”

What intuitions can we take from these fields?

1. A computer is a big discrete dynamical system

2. Software keeps the system on well-defined trajectories - the IFSM
corresponds to the states that we wish are the only reachable ones

3. Small deviation from an intended trajectories tends to blow up the set of
reachable states

What intuitions can we take from these fields?

4. Attackers try to cause deviation from intended trajectory

5. Attackers then try to “drive” the dynamical system to an advantageous
state

6. The goal of secure systems engineering: Make this harder.
a. Option: Systems that revert to intended trajectories (see unexploitability proof)
b. Option: Systems that detect deviant trajectories
c. (Worst) option: Systems that “shake up” the trajectories

Future hardware and language design

The roots of insecurity

● Almost all security issues have a de-synchronization between IFSM and
concrete CPU state at their root

● “Weird machines” emerge, and end up being too powerful (in terms of
reaching other states)

● Hardware does not have capability to detect “off-the-rails” execution

Where do we go from here?

● Preventing “going off the rails” is difficult: Hardware is not perfect,
especially in hostile environments.

● Co-design of programming language and hardware.

● Ways of communicating IFSM invariants to the hardware.

Better Programming Languages

● Better programming language support for specifying and reasoning about
IFSM states would be great.

● Synthesis of software from IFSM specification.

● Automated derivation of invariants for the IFSM.

Real-world example: Memory tagging (1)

● Each memory allocation generates N random bits and stores them in the
returned pointer.

● Memory is “tagged” with this pointer (possibly stored inline in DRAM in
special bits)

● Memory dereference validates: Is the pointer still pointing to memory with
the right tag?

Real-world example: Memory tagging (2)

● Enforced IFSM invariant: Pointers do not cross allocations.

● Note: Language constraint and programming convention that is enforced
on the hardware layer.

● Much stronger systems can be imagined:
○ Fully typed memory?
○ Other constraints about pointer-access-patterns

Questions?

Thank you.

Detailed talk with proof sketch:
https://vimeo.com/252868605

Full paper:
https://ieeexplore.ieee.org/document/8

226852

https://vimeo.com/252868605
https://ieeexplore.ieee.org/document/8226852
https://ieeexplore.ieee.org/document/8226852

