
Script:
Program Analysis and Binary Exploitation

Paul Scherer

University of Bonn
Institute of Computer Science
Lecturer: Dr. Elmar Padilla, Martin Clauß
Winter term 2019/20

Contents

1 Basics . 1
1.1 Analysis . 2
1.2 Tools . 4
2 Fuzzing . 5
3 Vulnerability Research . 7
3.1 Definitions . 7
3.2 Process . 8
3.3 Attack surface . 8
4 Binary Exploitation . 9
4.1 Buffer overflows . 9
4.2 Heap Overflow . 11
4.3 Format String Attacks . 14
5 Protection Techniques . 15
6 Exim RCE . 15

1 Basics 1

Liability exclusion

I wrote this script for the purpose of individual revision for the exam and provide it only for
this purpose. Completeness and correctness are not guaranteed. All rights remain by the
author and every usage beyond this context requires the consent of the author.

1 Basics

- binary representation

big endian: begin with highest-value byte, network byte order

little endian: begin with lowest-value byte

two’s complement

word sizes

- positional notation

- base conversion

Structures

- lists

queue: first in first out (FIFO)

stack: last in first out (LIFO)

set: unsorted

- structs

- heaps

- processes: instance of a computer program

tools: ps

- threads: lightweight processes

- virtual memory

- ELF (Executable and Linkable Format) under UNIX

ELF header: magic byte 0x7f454c46 (0x7f, ELF)

program headers

section headers

.text segment: code

.(ro)data segment: (read only) data

.dynstr / .dynsym segment

.bss segment

.got: global offset table

.plt: (lazy) procedure linkage table

- PE (Portable Executable) under Windows

1 Basics 2

1.1 Analysis

Static analysis

- concept: parsing the binary directly

source code overwhelmingly not available

- disassembly: conversion binary code → assembler instructions

(almost) full reconstruction possible

linear sweep disassembly: instruction after instruction, no logic checks, easily con-
fusable

recursive disassembly: next “known” instruction, following jumps/calls, logic anal-
ysis

tools: objdump, gdb, IDA

- decompilation: conversion assembler instructions → program code

- dataflow analysis: programme as graph

- symbolic execution/evaluation: abstract interpretation as case differentiation (in a
graph)

input: symbolic values

techniques: loop unrolling

problem: path explosion (number of paths = 2number of branches)

Dynamic analysis

- concept: program as black box / unknown function of the input

input → black box → output

focus on concrete values for one execution path

- sandbox: execution in an isolated and controlled environment on the real processor

implemented in virtual machines (Oracle Virtual Box, KVM, Xen, Qemu)

- emulation: execution on a simulated processor

- debugging: monitoring of the running process

Virtual Memory

- not enough physical RAM available for all processes

- mapping: program/virtual address → address translation → RAM/physical address

- outsourcing of pages to the hard disk if not enough space free

- organised in a page table

hit: page table entry (PTE) is valid, data retrieved

miss: page fault triggered → missing page loaded by the page fault handler

1 Basics 3

- address space separation: own physical pages for each process

shared pages possible

- virtual memory protection: permission bits for each virtual page

supervisor/kernel mode access

read, write

execution

- segments in process virtual memory

stack

heap

.bss: uninitialized static variables

.data: initialized local static and global variables

.text: code with executable instructions

- stack

direction of growth: downwards, lower addresses

used as temporary workspace

stack frame: coherent data in a block

backtrace: list of currently active functions

- heap

direction of growth: upwards, higher addresses

dynamically allocated

allocation via malloc(), calloc(), realloc()

unblocking manually via free()

Debugger

- components

interrupts handler: hardware-/softwareinterrupts, debug exceptions

system information extractor: memory inspection

communication protocols

- debug symbols: additional information in the symbol table

- hybrid analysis: combination of methods for static and dynamic analysis

POSIX signals

- purpose: notification to a process about the occured event

- properties:

asynchronous

can be sent by any process to another process at any time

- 31 signals defined

1 Basics 4

DBI (Dynamic binary instrumentation)

- purpose: insertion of code into a process without modification of the original binary

extract runtime information

change of behaviour of the program

- applications: e.g. Valgrind

vulnerability research/bugs hunting, product hacking

1.2 Tools

- file: determine file type

three sets of tests: filesystem tests, magic tests, language tests

result of the first successful test returned

- readelf: extract ELF header

- objdump: extract file headers, sym(bol)s; disassemble

- ltrace: library calls of the program to the GNU C Library, received signals

- strace: system calls of the GNU C Library to the Linux kernel, received signals

- strings: ascii strings in the binary (consecutive printable values + \0)

- nm: extraction of the symbol table

gdb commands

- running a programme: run

run args

run < file_input

- breakpoints: stop at specific addresses

b[reak] function_name

b[reak] *address

conditional: b[reak] position if condition

- navigation

next/nexti: next high/low-level instruction

step/stepi: step into high/low-level

continue: execution until the next breakpoint

until function/line: execution until the function/line

- information

print x: variable/register

x/7bx$sp, x/1i $rcx: examination of stack/memory/register

info registers: register values

2 Fuzzing 5

- watchpoints: stop if the value of an expression changes

- attaching a process

gdb program PID

gdb; attach PID

2 Fuzzing

- aim: finding bugs and vulnerabilities in software

- process: input generation/mutation → binary execution → binary misbehaviour? →
crash analysis, bug and exploit

Approaches

- dumb fuzzing

brute-force over the input space

random generation/mutations of the input

- coverage guided fuzzing

iteration over an initial input queue with random mutations

detection of new branches during the execution

→ improved performance

Target selection

- concrete target given or projects from Github chosen

- preferable C/C++ projects and standalone binaries or libraries

- harder:

non-compiled languages with native modules

server applications

- target preparation: usually special compilation required

e.g. modification of makefiles, etc.

all dependencies must be included

Fuzzer selection

- dump fuzzing: radamsa

- coverage guided fuzzing: AFL, libfuzzer, Hongfuzz

- black-box fuzzing: limited knowledge

given: e.g. closed-source binary

only the output available

special tracing techniques necessary for internal information

2 Fuzzing 6

- white-box fuzzing: full knowledge about target

given: e.g. source code

target modification possible

current state of the binary known

- decision criteria

suitability

performance

personal preference

AddressSanitizer (ASAN)

- purpose: bug detection during runtime

no protection provided

- parameter: -fsanitze=address

- process: compilation → binary execution → bug triggered? → crash

performance significantly effected

- mechanism: memory access check for validity

check of every memory access with additional code

red zones around allocated memory reserved

check against the shadow memory

special implementation for malloc(), free()

- limitations

no false positives, but false negatives

overwriting of allocated variables/objects not detectable

+ advantage: earlier bug recognition

- disadvantage:

higher memory consumption

slower execution

Corpus

- selected example inputs instead of random inputs

- purpose: high coverage

diverse inputs within a limited total amount of samples

maximal coverage with minimal number of examples

3 Vulnerability Research 7

Crash analysis

- first hints in the ASAN output

category: e.g. stack/heap overflow

exploitability estimation

- further steps

debugging with crash input

exploit development for Prove of Concept (PoC)

- crash deduplication by

same execution path

same stack trace, compared by hash value

“ground truth”, very precise but expensive

- problem: some constraints too specific for more or less random inputs

→ symbolic execution possibly more helpful

- fuzzer evaluation as complicated task depending on

applied metric

usable results

3 Vulnerability Research

3.1 Definitions

- a bug exposing a vulnerability, that can be exploited

- vulnerability: flaw/weakness in

system’s design

implementation

operation and management

- control flow: blocks of instructions connected with arrows

- data flow: semantics of blocks connected with arrows

Attack objectives

- Confidentiality

- Integrity

- Availability

3 Vulnerability Research 8

3.2 Process

Scoping

- often not possible to analyse the complete program

- limitations by

certain functionality

concrete elements

time constraints

⇒ definition of goals

- salt: triangle of

termination

soundness/unsoundness: all/some facts understood

completeness/incompleteness: actual/additional facts

Classification of variables

- forward: reaching definitions

valid assignments not yet overwritten

compression by constant propagation: equivalent replacement for code segments

- backward: live variable analysis

variable with a value that may be needed

compression by dead code elimination

Intermediate representations

- abstraction from assembler instructions

computation in different steps

improved readability

- existing representations

vex, reil, llvm, esil, bil/bnil

3.3 Attack surface

- Program input/output

environment variables

command line arguments

stdin

files

network security

signals/exceptions

4 Binary Exploitation 9

- symbols

- execution

C language issues

- assumption: deep knowledge about the language given

- not implemented

initialisation of data structures

prevention of out of bounds reading/writing

avoiding double-free, use-after-free, freeing unused memory

invalidation of dangling pointers

⇒ critical data possibly overwritten

depending on the location of the buffer

- casting of every data type to every other data type possible

unforeseen consequences

- manual error checking necessary

overflows possible if not done

- truncation: information loss through

casting a bigger type to a smaller one

shifting a value out of its range

- signed/unsigned variables as the other format

- partially detectable with ASan (AddressSanitizer)

4 Binary Exploitation

- stack frame for functions

parameters (right to left)

return address: pushed by call

old base pointer: saved by the callee

local variables (order dependent on the compiler)

4.1 Buffer overflows

- requirement: copy functions without length checking

strcpy(), scanf("%s"), std::cin, . . .

function calls with incorrect/manipulated copy size

- more data written to a buffer than it can hold

4 Binary Exploitation 10

Return Address Manipulation

- overwriting the return address

filling buffer and base pointer

setting new return address to an arbitrary address

- target addresses

functions given in the program’s code

shellcode (NOP slide + malicious code)

libc functions

beginning of a ROP chain

- demands for shellcode

fitting in the available size

bad characters free (\0, \n, . . .)

position independent

environment dependencies

stored in

buffer

environment variables

- ret2libc: calling functions in the standard C library (libc)

useful: system() to execute an arbitrary command

preparation of a stack frame for system()

64-bit: pop parameter in register rdi (parameter on top of the stack, “pop rdi; ret”
gadget)

- ROP (Return Oriented Programming)

requirements for gadgets

stored in program’s memory (code segment, libc, etc.)

executable (R-X permission)

ending with ret

stack pointer as new instruction pointer

ROP-chain: addresses of gadgets written on the stack

gadgets: 3-4 instructions in average

x86 instructions interpretable from any given offset

tools for automatic gadget search

side effects: undesirable instructions possibly included in gadgets

compensation necessary

alternative: execution of mprotect for the stack, execution of the shellcode directly

4 Binary Exploitation 11

Shellcode

- historically: starting a shell locally

- remote shell

TCP bind shell: connection attacker → target, likely blocked by the firewall

TCP reverse shell: connection target → attacker, outgoing connection usually
allowed

- crafting

given: compiled C program with the desired functionality

tracing system calls

determining syscall numbers and parameters

rebuild in assembly

transformation to a hexstring

de-nullifying, removal of bad characters (\0, \n): replacement of single instruc-
tions

testing

alternative: automation tools (pwn.shellcraft)

- constraints

functions stopping at \0,\n, partially only alphanumeric characters allowed

signature matching in the target’s firewall: detecting typically two parts (vulnera-
bility trigger, payload)

shellcode obfuscating used to bypass signature matching (NOP instructions, jump-
ing, encryption)

4.2 Heap Overflow

- growth and writing direction: towards higher addresses

- several implementations used

- components

arena: references to at least one heap

chunks: memory for meta-data ; user data, multiple of 8 bytes as size

free chunks: prev size;size, AMP;forward pointer;backward pointer;data

in-use chunks: prev size ; size,AMP ; user data

AMP: PREV INUSE flag, indicator for usage of the previous chunk

bins: management of free chunks

fast bins: singly linked list

holding recently freed small chunks

LIFO list

inuse bit of entries still set

4 Binary Exploitation 12

small/unsorted/large bins: doubly linked list

FIFO list

consolidation: combination of small and large bin chunks to larger chunks in the
unsorted bin

condition: freed and to be freed chunks bordering a free chunk

unlinking from the doubly linked free list

increasing the size of the combined chunk

- GOT (Global Offset Table): jump targets for functions

interesting objective for overwriting

Heap Overflows

- Unlink exploit: overwriting meta-data with user data

arbitrary code execution possible

meta data;user data;meta data;user data, second meta-data manipulated

Write-What-Where condition when unlinking a free chunk

- Write-What-Where condition: write an (almost arbitrary) value to an (almost) arbi-
trary location

- controlled FD and BK ⇒ arbitrary write possible

substitutions of function addresses

- steps

allocation of two memory chunks

writing the first chunk with a vulnerable function

setting up a freed fake chunk:
dummy dummy;jmp+10;dummy dummy;sc + padding;-4 -4;&free;& sc

calling free(first) : overwriting the GOT entry of free with the shellcode

calling free(second) : executing the shellcode

dummy bytes overwritten by the unlink algorithm

Use After Free (UAF)

- freed data on the heap used as valid memory with a leftover reference / dangling
pointer

- dangling/stale/wild pointer: reusable pointer/reference to freed data

current content unknown

requirement for UAF vulnerability

- several attack vectors available

4 Binary Exploitation 13

- code execution

memory chunk allocated for a structure with fields function pointer, char*

freeing of the chunk and allocation for structure with fields int, char*

user data written in int, char* of the new structure (&system, “/bin/sh”)

a pointer to the old structure used to call the function pointer

⇒ shell with system() and /bin/sh

- write condition / GOT overwrite

memory chunk allocated for a structure with fields function pointer, char*

freeing of the chunk and allocation for a structure with fields int1, int2, char*

user data written in the new structure, int2 (desired target address)

user data written in the old structure, char* (desired value)

⇒ write condition

- read condition

memory chunk allocated for a structure with fields function pointer, char*1, char*2

freeing of the chunk and allocation for a structure with fields int, char*1, char*2

user data written in the new structure, char*1

data read from the old structure, char*1

⇒ possibly secret data read

- exploitations

VTable hacking (Virtual function Table): list of pointers to virtual functions

Heap Feng Shui

- influencing the heap layout

- concept

deterministic heap allocator

control of the heap layout with a specific sequence of allocation / free

⇒ determined address of a new object

- approach

closing all holes

adding a big consecutive memory block

poking holes by deallocation

address of the next allocation known

data in the allocated bytes set by the attacker

4 Binary Exploitation 14

4.3 Format String Attacks

- format string: conversion of different datatypes to string representations

conversion specification: %i, %s, . . .

ordinary characters copied

parameters pushed on the stack

- vulnerability:

input string from user interpreted as command for format functions

- mapping out the stack content: %p, %#.8x

direct parameter access at #-th argument: %#$p (possibly $ to be escaped)

- reading arbitrary memory: %s

reading until \0

crash at invalid addresses → DoS attack

problem: null bytes in the address

- write-what-where with %n

%n: number of bytes written so far stored in the supplied pointer

identification of the direct parameter access

desired address in the first 4/8 byte (32/64 bit) of the format string

application of %n for the identified direct parameter access

format string:
desired address;width field, direct parameter access; AAAA%008x%<#>$n, address size +
width field = target value

problem: addresses as big integers → length modifier (%hn: 2 byte value, %hhn:
1 byte value)

⇒ 4 bytes written to an address of our choice

- GOT overwrite

replacing the address of a function in the GOT

determining format string offset for %hn: pwnlib.fmtstr, BASH-Fu, try & error

address of the GOT entry for the desired function: static/dynamic analysis tools
(objdump/gdb)

address for redirection of the program flow

- GOT alternatives

DTORs: destructor in object oriented languages

FINI ARRAY: (optional) segment with instructions for process termination

C library hooks: functions modifying the behaviour of malloc(), realloc(), free()

atexit structures: function called while execution of exit()

function pointers

5 Protection Techniques 15

5 Protection Techniques

Stack

- stack canary: additional value between saved base pointer and return address

static canary: fixed bytes

random canary: generated at every call

terminator canary: containing null byte(s) (\0)

canary check against a save backup before returning

problems:

– canary brute forced or guessed

– reading the canary by an information leak

– setting the master canary to a known value

– probably not all functions protected

- non-executable stack (NX)

data on the stack marked as non-executable

⇒ ret2libc or ROP applicable

- checking tool: checksec

ASLR (Address Space Layout Randomization)

- randomized addresses of process segments

⇒ no fixed addresses in exploits working

- circumvention possible

libraries, executables not as position independent code (PIC, PIE)

investigation of addresses with brute-force

information leak

RELRO (Relocation Read-only)

- headers in the binary marked as read-only when linker finished

- partial RELRO: .ctors, .dtors, .jcr read-only

CTOR: constructor in object-oriented languages

.jcr: section for registering compiled Java classes

- full RELRO: additional GOT read-only

6 Exim RCE

- Exim: mail transfer agent (MTA) for Linux systems

mail relay over SMTP

6 Exim RCE 16

Development environment

- virtual machines

automated setup with Vagrant

- containers using

LXC, Container Linux

Docker, Singularity

Vulnerability

- exploit for the Base64 decoding function

3n + 1 bytes allocated, but 3n + 2 required

⇒ one byte heap overwrite

- own memory management implemented based on libc

blocks in a singly linked list

Exploit

- Access Control List (ACL) checks can be pre-defined in the configuration file by the
administrator

- predefined check string for ACL check overwritten with the exploit in the main memory

AUTH PLAIN as malformed Base64 string

→ size field of the next chunk overwritten

using heap feng shui

- extended chunk used to overwrite the following next pointer

- free() called in smtp_reset-step

- manipulated ACL storebook is reallocated and the acl_smtp_rcpt is overwritten with
e.g. “${/bin/bash -c {’touch /tmp/pwnd’}}\0”

⇒ shell available for further exploitation

Limitations

- attack only working with deactivated ASLR

partial overwrite possible to bypass ASLR

